Department updates

» Go to news main

Mixture designs to assess composition‑structure‑property relationships in SiO2‑CaO‑ZnO‑La2O3‑TiO2‑MgO‑SrO‑Na2O glasses: potential materials for embolization

Posted by Robert Abraham on September 28, 2013 in Interventional

See full publication

Abstract

Embolization with micron-sized particulates is widely applied to treat uterine fibroids. The objective of this work was to develop mixture designs to predict materials composition-structure-property relationships for the SiO₂-CaO-ZnO-La₂O₃-TiO₂-MgO-SrO-Na₂O glass system and compare its fundamental materials properties (density and cytocompatibility), against a state-of-the-art embolic agent (contour polyvinyl alcohol) to assess the potential of these materials for embolization therapies. The glass structures were evaluated using ²⁹Si MAS NMR to identify chemical shift and line width; the particulate densities were determined using helium pycnometry and the cell viabilities were assessed via MTT assay. ²⁹Si MAS NMR results indicated peak maxima for each glass in the range of -82.3 ppm to -89.9 ppm; associated with Q² to Q³ units in silicate glasses. All experimental embolic compositions showed enhanced in vitro compatibility in comparison to Contour PVA with the exceptions of ORP9 and ORP11 (containing no TiO₂). In this study, optimal compositions for cell viability were obtained for the following compositional ranges: 0.095-0.188 mole fraction ZnO; 0.068-0.159 mole fraction La₂O₃; 0.545-0.562 mole fraction SiO₂ and 0.042-0.050 mole fraction TiO₂. To ensure ease of producibility in obtaining good melts, a maximum loading of 0.068 mole fraction La₂O₃ is required. This is confirmed by the desirability approach, for which the only experimental composition (ORP5) of the materials evaluated was presented as an optimum composition; combining high cell viability with ease of production (0.188 mole fraction ZnO; 0.068 mole fraction La₂O₃; 0.562 mole fraction SiO₂ and 0.042 mole fraction TiO₂).


Comments

All comments require a name and email address. You may also choose to log-in using your preferred social network or register with Disqus, the software we use for our commenting system. Join the conversation, but keep it clean, stay on the topic and be brief. Read comments policy.

comments powered by Disqus