» Go to news main

State €‘of €‘the €‘art tools and equipment to support discovery and innovation

Posted by Michele Charlton on August 16, 2017 in News


Six Dalhousie researchers have received funding for their innovative work from the Canada Foundation for Innovation’s (CFI) John R. Evans Leaders Fund (JELF).   

The JELF plays an important research support role for universities. It is designed to help attract and retain top talent from around the world by giving researchers access to start-of-the-art tools and equipment.

Dr. David Langelaan (Biochemistry & Molecular Biology) and Dr. Brendan Leung (Biomedical Engineering) are Medicine's recipients of this years' JELF award. Read more below.  

View all six Dalhousie researchers funding plans on Dal News.  

 

David Langelaan, Biochemistry and Molecular Biology

An X-ray diffraction facility for characterizing protein assembly

Proteins are molecules in our bodies that carry out functions that are critical to life. Often times, proteins assemble together to do these jobs, such as generating biomaterials like spider silk, collagen, and protective layers in fungi spores. Protein assembly can also create signaling complexes in cells that control gene expression and organism development.

Dr. Langelaan’s goal is to gain a better understanding of how protein assembly works. His research will be used to create new biomaterials, find new strategies to control gene expression, and potentially treat diseases such as melanoma.

The funding Dr. Langelaan is receiving from the JELF will be used to purchase an X-ray diffractometer, which can provide atomic-resolution three-dimensional pictures of proteins. His research will study protein assembly in two different systems:

1) System 1: Hydrophobins are proteins from fungi that are able to interact with and change the properties of surfaces. The X-ray diffractometer will help Dr. Langelaan’s team determine how hydrophobins work, and allow them to design hydrophobins with new properties. Once they accomplish this, the hydrophobins will be used as modifying agents or surfaces such as biomedical implants and fabrics

2) System 2: Transcription factors are proteins in the body that control how cells grow, and are often associated with diseases like cancer. Dr. Langlelaan’s team will characterize how protein assembly influences the properties of melanoma. What he discovers will provide new strategies to treat melanoma.

 

 

Brendan Leung, Applied Oral Sciences (crossed appointed to Biomedical Engineering)

Development of mammalian-microbial co-culture and microtissue culture platforms to model human disease

One of the most widely used methods to study diseases in humans is in vitro cell culture. This is where cells are grown on glass or plastic two-dimensional surfaces.

The problem associated with this traditional approach is that is does not accurately reflect the unique environment within living three-dimensional tissues and organs. In addition, current methods cannot accommodate cell culture containing both mammalian cells and microbes (e.g. bacteria and fungus) due to incompatible culture environments. This has significantly limited the understanding of disease progression in humans, and impacts the ability to accurately predict the outcome of drug treatments.

Dr. Leung and his team will combine engineered three-dimensional microtissues with bioprinting technologies to create advanced disease models containing confined microbial compartments based on aqueous two phase systems (ATPS). The funding received from CHI-JELF will allow the Leung lab to purchase a state-of-the-art robotic bioprinting platform and an automated live-cell imaging and analysis microscope. Together these pieces of equipment will allow high throughput fabrication and observations of microbes-microtissue interactions, which will fill the gaps in the understanding of how diseases begin and evolve, help identify new therapeutic targets, and improve patient care care through faster drug discovery.