Publication

» Go to news main

Toward individualized prediction of seizure recurrence: Hippocampal neuroimaging features in a cohort of patients from a first seizure clinic

Posted by Angie Kinsman, for Dr. Matthias H. Schmidt, Dr. Candice E. Crocker and Mo Abdolell on September 1, 2021 in Neuroradiology

A new publication from Dr. Matthias H. Schmidt, Dr. Candice E. Crocker and Mo Abdolell!

Click here to view the article.

Highlights

  • Longitudinal imaging after a first seizure might yield insights into epileptogenesis.

  • Neuroimaging after a first seizure might yield biomarkers of epileptogenesis.

  • Hippocampal neuroimaging features might predict seizure recurrence.

Abstract

Purpose

We performed an exploratory analysis of electroencephalography (EEG) and neuroimaging data from a cohort of 51 patients with first seizure (FS) and new-onset epilepsy (NOE) to identify variables, or combinations of variables, that might discriminate between clinical trajectories over a one-year period and yield potential biomarkers of epileptogenesis.

Methods

Patients underwent EEG, hippocampal and whole brain structural magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and magnetic resonance spectroscopy (MRS) within six weeks of the index seizure, and repeat neuroimaging one year later. We classified patients with FS as having had a single seizure (FS-SS) or having converted to epilepsy (FS-CON) after one year and performed logistic regression to identify combinations of variables that might discriminate between FS-SS and FS-CON, and between FS-SS and the combined group FS-CON + NOE. We performed paired t-tests to assess changes in quantitative variables over time.

Results

Several combinations of variables derived from hippocampal structural MRI, DTI, and MRS provided excellent discrimination between FS-SS and FS-CON in our sample, with areas under the receiver operating curve (AUROC) ranging from 0.924 to 1. They also provided excellent discrimination between FS-SS and the combined group FS-CON + NOE in our sample, with AUROC ranging from 0.902 to 1. After one year, hippocampal fractional anisotropy (FA) increased bilaterally, hippocampal radial diffusivity (RD) decreased on the side with the larger initial measurement, and whole brain axial diffusivity (AD) increased in patients with FS-SS; hippocampal volume decreased on the side with the larger initial measurement, hippocampal FA increased bilaterally, hippocampal RD decreased bilaterally and whole brain AD, FA and mean diffusivity increased in the combined group FS-CON + NOE (corrected threshold for significance, q = 0.017).

Conclusion

We propose a prospective, multicenter study to develop and test models for the prediction of seizure recurrence in patients after a first seizure, based on hippocampal neuroimaging. Further longitudinal neuroimaging studies in patients with a first seizure and new-onset epilepsy may provide clues to the microstructural changes occurring at the earliest stages of epilepsy and yield biomarkers of epileptogenesis.


Comments

All comments require a name and email address. You may also choose to log-in using your preferred social network or register with Disqus, the software we use for our commenting system. Join the conversation, but keep it clean, stay on the topic and be brief. Read comments policy.

comments powered by Disqus