Thomas Pulinilkunnil

Professor


Email: tpulinil@dal.ca
Phone: 506-636-6973
Mailing Address: 
DMNB 138
100 Tucker Park Road
PO Box 5050
Saint John, New Brunswick, Canada E2L 4L5
 

Education

  • Postdoctoral Fellow, University of Alberta, Edmonton, Canada
  • Postdoctoral Fellow, Harvard Medical School, Boston, USA
  • Ph.D., University of British Columbia, Vancouver, Canada

Academic Positions

  • Department member since 2012
  • Adjunct Professor, University of New Brunswick
  • Affiliate Scientist, Saint John Regional Hospital
  • Diabetes Canada Scholar
  • Member, Team IMPART
  • Member, CVRG

Research Topics:

Metabolic regulation of Autophagy in health and disease. Nutrient regulation of lysosome function. Biology of amino acid metabolism and signaling. Role of alpha-mannosyltransferase in glycosylation disorders

Research

Proteotoxic Basis for Metabolic Heart Disease

One of the major focus of the Pulinilkunnil laboratory is to assess how adaptive or causative changes in protein synthesis and degradation causes heart disease. To maintain cellular homeostasis, synthesized proteins are degraded and recycled inside cellular organelles called lysosomes by a process known as autophagy. Using a multispecies approach (rodents, yeast and zebrafish) Pulinilkunnil lab will specifically examine how different nutrients (glucose, fat and amino acids) influence lysosomal function to alter autophagy. Furthermore investigate whether aberrant lysosomal function impact mitochondrial metabolism and energetics thus governing cardiovascular outcomes in biology and disease.

Lysosome Nutrient Sensing and Metabolism in Cancer Pathogenesis

Reprogrammed energetics and metabolism is an emerging hallmark of cancer cells. Indeed, altered mitochondrial fuel metabolism contributes to oncogenic mutations which in turn influences cellular signaling and function. Numerous oncogenic processes that are resistant to chemotherapeutics are found to exhibit features of intermittent oxygen and nutrient deprivation, mitochondrial stress, abnormal cell growth and suppressed cellular death. Recent studies have shown that abnormalities in cellular metabolism augment autophagy to facilitate cancer cells to precipitously adapt to environmental stressors by sustaining uninterrupted proliferation thereby evading demise by radiation and/or chemotherapy. Our laboratory is currently elucidating the mechanism by which tumor cell metabolism signals changes in lysosomal autophagy and mechanisms by which this signaling could influence the outcomes of treating cancer. By specifically examining the cross talk between mitochondria and lysosome we hope to uncover novel biochemical pathways that could be targeted selectively to render cancer cells susceptible to first line cancer treatment.

Biology of ER Glycosylation in Health and Disease

Glycosylation is an extremely important function by which all human cells build sugar chains or glycans that are subsequently attached to other functional molecules, including proteins and lipids. The products of these attachments are called glycoproteins or glycolipids, and are required for the normal growth and function of all tissues and organs. Impairment in glycosylating enzyme disrupts glycan synthesis and metabolism leading to congenital disorder of glycosylation (CDG). Using yeast and zebrafish models Pulinilkunnil lab aims to examine molecular pathways by which impaired glycosylation promotes intracellular distress specifically in organelles like mitochondria, endoplasmic reticulum and lysosomes that are mainly responsible for generating energy, performing quality check on proteins and degrading cellular waste. This research will identify and characterize novel pathways and proteins mediating pathological effects of defective glycosylation.

Branch Chain Amino Acid Regulation of Energy Metabolism

Amino acids particularly branched-chain amino acids (BCAA) such as leucine, isoleucine, and valine are mostly used for manufacturing proteins for growth within muscle but are also used for generating energy. However, our understanding of how BCAA are utilized for generating energy within cells is still lacking. Goals of our research are to determine the enzymes mediating this process, how these enzymes are regulated and the impact on the cell when BCAA are used as an energy source. We want to know whether BCAA compete with other nutrients for being consumed by the cell for energy and which pathways regulate the competition process. Despite the widespread presence of amino acid metabolizing enzymes in different tissues their impact on mitochondrial energy generation and function in health and disease remains unexplored. Using cell biology, genetic and whole body approaches in zebrafish and mouse my research program will focus broadly on addressing the following questions; 1) to uncover how the nutrient triad glucose, fatty acid and BCAA biochemically communicate with each other resulting in nutrient transport and utilization within the mitochondria; 2) to decipher whether within the cell different biomolecules such as ions, hormones, lipids, sugars and neurotransmitters employ the services of amino acids to govern cellular growth and survival in health and disease.

Keywords:

Lysosome, Autophagy, Metabolism, Energetics, Amino Acids, BCAA, Obesity, Diabetes, Breast Cancer, Lipids, Glycosylation, Zebrafish, Heart failure

Current Lab Members

Gurpreet Kaur Grad Student (MSc)
Max Merilovich Grad Student (PhD)
Aparna Vivek MITACs Globalink Student
Nehal Wadnikop Research Technician

 

Former Lab Members

Sundaram Pakkirisami 2023 Postdoc (University of Western Ontario)
Adithi Pisapati 2023 Grad Students (MSc)
Isidora Reyes 2023 MITACs Globalink Student
Swetha Vinayagam 2023 MITACs Globalink Student
Khoi Dao 2023 RIM Student
Maggie Pickard 2023 Grad Student (MSc)
Wai Niang 2022 Research Technician
Anastasia Dekic 2022 MITACs Globalink Student
Logan Slade 2022 Grad Student (PhD)
Lauren Mahon-Hodgins 2021 Research Technician
Dipsikha Biswas 2020 Postdoc
Purvi Trivedi 2020 Grad Student (PhD)
Neil Mueller 2020 Summer Student
Mitchell Hanlon 2020 Co-op Student
Shreya Sarkar 2020 Postdoc
Khoi Dao 2018 Research Technician
Lilliam Rios 2016 Research Technician
Kathleen Tozer 2016 RIM Student
Purvi Trivedi
2016 MSc Program
Lester Perez 2016 Research Associate
Tess Robarts 2014 Summer Student (May-Aug)
Alyson Zwicker 2014 Summer Student (May-Aug)
Brandyn Chase 2013 Medical Student
Kelan Kennedy 2013 Medical Student (Apr-Aug)
Alex Morris
2013 Medical Student (Apr-Aug)

 

Publications

(A complete publication list is available here)

  1. Yu CHJ, Kienesberger PC, Pulinilkunnil T, Rupasinghe HPV. Effect of (poly)phenol-rich 'Daux Belan' apple supplementation on diet-induced obesity and glucose intolerance in C57BL/6NCrl mice. Sci Rep. 2023 Oct 11;13(1):17206. [PubMedhttps://doi.org/10.1038/s41598-023-43687-6
  2. Slade L, Biswas D, Kienesberger PC, Pulinilkunnil T.  Loss of transcription factor TFEB dysregulates the G1/S transition and DNA replication in mammary epithelial cells. J Biol Chem. 2022 Nov 10:102692. [PubMedhttps://doi.org/10.1016/j.jbc.2022.102692
  3. Uddin GM, Karwi QG, Pherwani S, Gopal K, Wagg CS, Biswas D, Atnasious M, Wu Y, Wu G, Zhang L, Ho KL, Pulinilkunnil T, Ussher JR, Lopaschuk GD. Deletion of BCATm increases insulin-stimulated glucose oxidation in the heart. Metabolism. 2021 Nov;124:154871. https://doi.org/10.1016/j.metabol.2021.154871
  4. Grieve S, Puvvada N, Phinyomark A, Russell K, Murugesan A, Zed E, Hassan A, Legare JF, Kienesberger PC, Pulinilkunnil T, Reiman T, Scheme E, R Brunt K. Nanoparticle surface-enhanced Raman spectroscopy as a noninvasive, label-free tool to monitor hematological malignancy. Nanomedicine (Lond). 2021 Oct;16(24):2175-2188. https://doi.org/10.2217/nnm-2021-0076
  5. Biswas D, Slade L, Duffley L, Mueller N, Dao KT, Mercer A, Pakkiriswami S, El Hiani Y, Kienesberger PC, Pulinilkunnil T. Inhibiting BCKDK in triple negative breast cancer suppresses protein translation, impairs mitochondrial function, and potentiates doxorubicin cytotoxicity. Cell Death Discov. 2021 Sep 15;7(1):241. https://doi.org/10.1038/s41420-021-00602-0
  6. D'Souza K , Acquah C , Mercer A , Paudel Y , Pulinilkunnil T , Udenigwe CC , Kienesberger PC. Whey peptides exacerbate body weight gain and perturb systemic glucose and tissue lipid metabolism in male high-fat fed mice. Food Funct. 2021 Apr 21;12(8):3552-3561. https://doi.org/10.1039/d0fo02610g
  7. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy, 2021 Feb 8:1–382. Advance online publication. [PubMed]
  8. Biswas D, Pulinilkunnil T. (2020). Disrupted branched-chain amino acid catabolism impair cardiac insulin signaling and is associated with adverse cardiometabolic outcomes. J Mol Cell Cardiol. 153:93-94. (Online ahead of print). [PubMed] [Article]
  9. Yeung PK, Mohammadizadeh S, Akhoundi F, Mann K, Agu RU, Pulinilkunnil T. (2020). Hemodynamic Assessment and in vivo Catabolism of Adenosine 5'- Triphosphate in Doxorubicin or Isoproterenol-induced Cardiovascular Toxicity. Drug Metab Lett. (Online ahead of print). [PubMed] [Article]
  10. Biswas D, Dao KT, Mercer A, Cowie AM, Duffley L, El Hiani Y, Kienesberger PC, Pulinilkunnil T. (2020). Branched-chain ketoacid overload inhibits insulin action in the muscle. J Biol Chem. jbc.RA120.013121. [PubMed]
  11. Biswas D, Tozer K, Dao KT, Perez LJ, Mercer A, Brown A, Hossain I, Yip AM, Aguiar C, Motawea H, Brunt KR, Shea J, Legare JF, Hassan A, Kienesberger PC, Pulinilkunnil T. (2020). Adverse Outcomes in Obese Cardiac Surgery Patients Correlates With Altered Branched-Chain Amino Acid Catabolism in Adipose Tissue and Heart. Front Endocrinol (Lausanne). 11:534. [PubMed]
  12. Sarkar S, Legere S, Haidl I, Marshall J, MacLeod JB, Aguiar C, Lutchmedial S, Hassan A, Brunt KR, Kienesberger P, Pulinilkunnil T, Légaré JF. (2020). Serum GDF15, a Promising Biomarker in Obese Patients Undergoing Heart Surgery. Front Cardiovasc Med. 7(103) [PubMed]
  13. Karwi QG, Biswas D, Pulinilkunnil T, Lopaschuk GD. (2020). Myocardial Ketones Metabolism in Heart Failure. J Card Fail S1071-9164(20)30033-6 [PubMed]
  14. Trivedi PC, Bartlett JJ, Mercer A, Slade L, Surette M, Ballabio A, Flibotte S, Hussein B, Rodrigues B, Kienesberger PC, Pulinilkunnil T. (2020). Loss of function of transcription factor EB remodels lipid metabolism and cell death pathways in the cardiomyocyte. Biochim Biophys Acta Mol Basis Dis. 1866(10):165832 [PubMed]
  15. Trivedi PC, Bartlett JJ, Pulinilkunnil T. (2020). Lysosomal Biology and Function: Modern View of Cellular Debris Bin. Cells 9(5):E1131 [PubMed]
  16. D'Souza K, Mercer A, Mawhinney H, Pulinilkunnil T, Udenigwe CC, Kienesberger PC. (2020). Whey Peptides Stimulate Differentiation and Lipid Metabolism in Adipocytes and Ameliorate Lipotoxicity-Induced Insulin Resistance in Muscle Cells. Nutrients 12(2):425 [PubMed]
  17. Slade L, Biswas D, Ihionu F, El Hiani Y, Kienesberger PC, Pulinilkunnil T., (2020). A lysosome independent role for TFEB in activating DNA repair and inhibiting apoptosis in breast cancer cells. Biochem. J. 477(1):137-160 [PubMed]
  18. Aguiar CM, Gawdat K, Legere S, Marshall J, Hassan A, Kienesberger PC, Pulinilkunnil T, Castonguay M, Brunt KR, Legare JF., (2019). Fibrosis independent atrial fibrillation in older patients is driven by substrate leukocyte infiltration: diagnostic and prognostic implications to patients undergoing cardiac surgery. J. Transl. Med. 17(1):413 [PubMed]
  19. Biswas D, Duffley L, Pulinilkunnil T., (2019) Role of branched-chain amino acid-catabolizing enzymes in intertissue signaling, metabolic remodeling, and energy homeostasis. FASEB J 33(8):8711-8731 [PubMed]
  20. Pulinilkunnil T, Kienesberger P, Nagendran J., (2019) Editorial: Novel Concepts in Cardiac Energy Metabolism: From Biology to Disease. Front Cardiovasc Med. 6:97 [PubMed]
  21. Wang F, Pulinilkunnil T, Flibotte S, Nislow C, Vlodavsky I, Hussein B, Rodrigues B., (2019) Heparanase protects the heart against chemical or ischemia/reperfusion injury. J Mol Cell Cardiol. 131:29-40 [PubMed]
  22. Aguiar C, MacLeod J, Yip A, Melville S, Légaré JF, Pulinilkunnil T, Kienesberger P, Brunt K, Hassan A., (2019) Impact of Obesity on Postoperative Outcomes following cardiac Surgery (The OPOS study): rationale and design of an investigator-initiated prospective study. BMJ Open 9(3):e023418 [PubMed]
  23. D'Souza K, Nzirorera C, Cowie AM, Varghese GP, Trivedi P, Eichmann TO, Biswas D, Touaibia M, Morris AJ, Aidinis V, Kane DA, Pulinilkunnil T, Kienesberger PC., (2018) Autotaxin-LPA signaling contributes to obesity-induced insulin resistance in muscle and impairs mitochondrial metabolism. J Lipid Res. 59(10):1805-1817 [PubMed]
  24. Zhang D, Wang F, Lal N, Chiu AP, Wan A, Jia J, Bierende D, Flibotte S, Sinha S, Asadi A, Hu X, Taghizadeh F, Pulinilkunnil T, Nislow C, Vlodavsky I, Johnson JD, Kieffer TJ, Hussein B, Rodrigues B, (2017) Heparanase Overexpression Induces Glucagon Resistance and Protects Animals From Chemically Induced Diabetes. Diabetes 66(1):45-57 [PubMed]
  25. Bartlett JJ, Trivedi PC, Pulinilkunnil T., (2017) Autophagic dysregulation in doxorubicin cardiomyopathy. J. Mol. Cell. Cardiol. 104:1-8 [PubMed]
  26. Gawdat K, Legere S, Wong C, Myers T, Marshall JS, Hassan A, Brunt KR, Kienesberger PC, Pulinilkunnil T, Legare JF., (2017) Changes in Circulating Monocyte Subsets (CD16 Expression) and Neutrophil-to-Lymphocyte Ratio Observed in Patients Undergoing Cardiac Surgery. Front Cardiovasc Med. 4:12 [PubMed]
  27. D'Souza K, Kane DA, Touaibia M, Kershaw EE, Pulinilkunnil T, Kienesberger PC., (2017) Autotaxin Is Regulated by Glucose and Insulin in Adipocytes. Endocrinology 158(4):791-803 [PubMed]
  28. Slade L, Cowie A, Martyniuk CJ, Kienesberger PC, Pulinilkunnil T., (2017) Dieldrin Augments mTOR Signaling and Regulates Genes Associated with Cardiovascular Disease in the Adult Zebrafish Heart (Danio rerio). J Pharmacol Exp Ther. 361(3):375-385 [PubMed]
  29. Perez LJ, Rios L, Trivedi P, D'Souza K, Cowie A, Nzirorera C, Webster D, Brunt K, Legare JF, Hassan A, Kienesberger PC, Pulinilkunnil T., (2017) Validation of optimal reference genes for quantitative real time PCR in muscle and adipose tissue for obesity and diabetes research. Sci Rep. 7(1):3612 [PubMed]
  30. Slade, L. and Pulinilkunnil, T., (2017) The MiTF/TFE Family of Transcription Factors: Master Regulators of Organelle Signaling, Metabolism, and Stress Adaptation. Mol. Canc. Res. 15(12):1637-1643 [PubMed] [Article]
  31. Marques-da-Silva, D, Francisco, R, Webster, D, Dos Reis Ferreira, V, Jaeken, J, and Pulinilkunnil, T., (2017) Cardiac complications of congenital disorders of glycosylation (CDG): a systematic review of the literature. J. Inherit. Metab. Dis. 40:657-672 [PubMed] [Article]
  32. Brown A, Hossain I, Perez LJ, Nzirorera C, Tozer K, D'Souza K, Trivedi PC, Aguiar C, Yip AM, Shea J, Brunt KR, Legare JF, Hassan A, Pulinilkunnil T, Kienesberger PC, (2017) Lysophosphatidic acid receptor mRNA levels in heart and white adipose tissue are associated with obesity in mice and humans. PLoS One 12(12):e0189402 [PubMed][Article]
  33. Trivedi PC, Bartlett JJ, Perez LJ, Brunt KR, Legare JF, Hassan A, Kienesberger PC, Pulinilkunnil T., (2016) Glucolipotoxicity diminishes cardiomyocyte TFEB and inhibits lysosomal autophagy during obesity and diabetes Biochim Biophys Acta. 1861(12 Pt A):1893-1910 [PubMed]
  34. Bartlett JJ, Trivedi PC, Yeung P, Kienesberger PC, Pulinilkunnil T., (2016) Doxorubicin Impairs Cardiomyocyte Viability by Suppressing Transcription Factor EB Expression and Disrupting Autophagy Biochem J.473(21):3769-3789 [PubMed]
  35. Dubé JJ, Sitnick MT, Schoiswohl G, Wills RC, Basantani MK, Cai L, Pulinilkunnil T, Kershaw EE., (2015) Adipose triglyceride lipase deletion from adipocytes, but not skeletal myocytes, impairs acute exercise performance in mice. Am J Physiol Endocrinol Metab.308(10):E879-90 [PubMed]
  36. O'Neill HM, Lally JS, Galic S, Pulinilkunnil T, Ford RJ, Dyck JR, van Denderen BJ, Kemp BE, Steinberg GR., (2015) Skeletal muscle ACC2 S212 phosphorylation is not required for the control of fatty acid oxidation during exercise. Physiol Rep. 3:e12444 [PubMed]
  37. Schoiswohl G, Stefanovic-Racic M, Menke MN, Wills RC, Surlow BA, Basantani MK, Sitnick MT, Cai L, Yazbeck CF, Stolz DB, Pulinilkunnil T, O'Doherty RM, Kershaw EE., (2015) Impact of Reduced ATGL-Mediated Adipocyte Lipolysis on Obesity-Associated Insulin Resistance and Inflammation in Male Mice. Endocrinology. 156:3610-3624 [PubMed]
  38. Kraus D, Yang Q, Kong D, Banks AS, Zhang L, Rodgers JT, Pirinen E, Pulinilkunnil TC, Gong F, Wang YC, Cen Y, Sauve AA, Asara JM, Peroni OD, Monia BP, Bhanot S, Alhonen L, Puigserver P, Kahn BB., (2014) Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity Nature 508(7495):258-62 [PubMed]
  39. Zordoky BN, Nagendran J, Pulinilkunnil T, Kienesberger PC, Masson G, Waller TJ, Kemp BE, Steinberg GR, Dyck JR., (2014) AMPK-dependent inhibitory phosphorylation of ACC is not essential for maintaining myocardial fatty acid oxidation. Circ Res. 115:518-524 [PubMed]
  40. O'Neill HM, Lally JS, Galic S, Thomas M, Azizi PD, Fullerton MD, Smith BK, Pulinilkunnil T, Chen Z, Samaan MC, Jorgensen SB, Dyck JR, Holloway GP, Hawke TJ, van Denderen BJ, Kemp BE, Steinberg GR., (2014) AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice. Diabetologia :1693-702 [PubMed]
  41. Adisesh A, Melville S, Pulinilkunnil T, Lutchmedial S, Brunt KR., (2014) Holiday reading. Diving into the ice bucket challenge. CMAJ186:1404-5 [PubMed]
  42. Pulinilkunnil T, Kienesberger PC, Nagendran J, Waller TJ, Young ME, Kershaw EE, Korbutt G, Haemmerle G, Zechner R, Dyck JR., (2013) Myocardial Adipose Triglyceride Lipase Overexpression Protects Diabetic Mice From the Development of Lipotoxic Cardiomyopathy. Diabetes. 62(5):1464-77 [PubMed]
  43. Kienesberger PC, Pulinilkunnil T, Nagendran J, Dyck JR., (2013) Myocardial triacylglycerol metabolism. J Mol Cell Cardiol. 55:101-10. [PubMed]
  44. Nagendran J, Kienesberger PC, Pulinilkunnil T, Zordoky BN, Sung MM, Kim T, Young ME, Dyck JR., (2013) Cardiomyocyte specific adipose triglyceride lipase overexpression prevents doxorubicin induced cardiac dysfunction in female mice Heart 99:1041-47 [PubMed]
  45. Kienesberger PC, Pulinilkunnil T, Nagendran J, Young ME, Bogner-Strauss JG, Hackl H, Khadour R, Heydari E, Haemmerle G, Zechner R, Kershaw EE, Dyck JR, (2013) Early structural and metabolic cardiac remodelling in response to inducible adipose triglyceride lipase ablation Cardiovasc Res. 99:442-51 [PubMed]
  46. Pulinilkunnil T, Kienesberger PC, Nagendran J, Sharma N, Young ME, Dyck JR., (2013) Cardiac-specific adipose triglyceride lipase overexpression protects from cardiac steatosis and dilated cardiomyopathy following diet-induced obesity. Int J Obes (Lond). 38:205-215 [PubMed][Article]
  47. Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen ZP, O'Neill HM, Ford RJ, Palanivel R, O'Brien M, Hardie DG, Macaulay SL, Schertzer JD, Dyck JR, van Denderen BJ, Kemp BE, Steinberg GR., (2013) Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med 19(12):1649-54 [PubMed]
  48. Sitnick MT, Basantani MK, Cai L, Schoiswohl G, Yazbeck CF, Distefano G, Ritov V, DeLany JP, Schreiber R, Stolz DB, Gardner NP, Kienesberger PC, Pulinilkunnil T, Zechner R, Goodpaster BH, Coen P, Kershaw EE., (2013) Skeletal muscle triacylglycerol hydrolysis does not influence metabolic complications of obesity. Diabetes 62:3350-61 [PubMed]
  49. Nagendran J, Pulinilkunnil T, Kienesberger PC, Sung MM, Fung D, Febbraio M, Dyck JR., (2013) Cardiomyocyte-specific ablation of CD36 improves post-ischemic functional recovery. J Mol Cell Cardiol. 63:180-88 [PubMed]
  50. Willis MS, Bevilacqua A, Pulinilkunnil T, Kienesberger P, Tannu M, Patterson C, (2013) The role of ubiquitin ligases in cardiac disease J Mol Cell Cardiol 71:43-53 [PubMed]
  51. Nagendran J, Pulinilkunnil T, Kienesberger PC, Sung MM, Fung D, Febbraio M, Dyck JR, (2013) Cardiomyocyte-specific ablation of CD36 improves post-ischemic functional recovery J Mol Cell Cardiol 63:180-188 [PubMed]
  52. Kienesberger PC, Pulinilkunnil T, Nagendran J, Dyck JR., (2012) Myocardial triacylglycerol metabolism. J Mol Cell Cardiol. 55:101-10 [PubMed]
  53. Pulinilkunnil, T, Nagendran, J, and Dyck JR, (2012) AMPK and Metabolic Remodeling in Cardiac Disease Translational Cardiology Molecular Basis of Cardiac Metabolism, Cardiac Remodeling, Translational Therapies and Imaging Techniques, C.Patterson, M.S. Willis (Eds) :113
  54. Kienesberger PC, Pulinilkunnil T, Sung MM, Nagendran J, Haemmerle G, Kershaw EE, Young ME, Light PE, Oudit GY, Zechner R, Dyck JR., (2012) Myocardial ATGL overexpression decreases the reliance on fatty acid oxidation and protects against pressure overload-induced cardiac dysfunction. Mol Cell Biol. 32(4):740-50. [PubMed]
  55. Puthanveetil P, Wang Y, Zhang D, Wang F, Kim MS, Innis S, Pulinilkunnil T, Abrahani A, Rodrigues B., (2011) Cardiac triglyceride accumulation following acute lipid excess occurs through activation of a FoxO1-iNOS-CD36 pathway. Free Radic Biol Med. 51(2):352-363 [PubMed]
  56. Pulinilkunnil T, He H, Kong D, Asakura K, Peroni OD, Lee A, Kahn BB., (2011) Adrenergic regulation of AMP-activated protein kinase in brown adipose tissue in vivo. J Biol Chem 286(11):8798-8809 [PubMed]
  57. Hamming KS, Soliman D, Webster NJ, Searle GJ, Matemisz LC, Liknes DA, Dai XQ, Pulinilkunnil T, Riedel MJ, Dyck JR, Macdonald PE, Light PE., (2010) Inhibition of beta-cell sodium-calcium exchange enhances glucose-dependent elevations in cytoplasmic calcium and insulin secretion. Diabetes 59(7):1686-1693 [PubMed]
  58. Olson DP, Pulinilkunnil T, Cline GW, Shulman GI, Lowell BB., (2010) Gene knockout of Acc2 has little effect on body weight, fat mass, or food intake. Proc Natl Acad Sci U S A 107(16):7598-603 [PubMed]
  59. Durgan DJ, Pulinilkunnil T, Villegas-Montoya C, Garvey ME, Frangogiannis NG, Michael LH, Chow CW, Dyck JR, Young ME., (2010) Ischemia/reperfusion tolerance is time-of-day-dependent: mediation by the cardiomyocyte circadian clock. Circ Res. 106(3):546-550 [PubMed]
  60. Tsai JY, Kienesberger PC, Pulinilkunnil T, Sailors MH, Durgan DJ, Villegas-Montoya C, Jahoor A, Gonzalez R, Garvey ME, Boland B, Blasier Z, McElfresh TA, Nannegari V, Chow CW, Heird WC, Chandler MP, Dyck JR, Bray MS, Young ME., (2010) Direct regulation of myocardial triglyceride metabolism by the cardiomyocyte circadian clock. J Biol Chem 285(5):2918-2929 [PubMed]
  61. Pulinilkunnil T, Puthanveetil P, Kim MS, Wang F, Schmitt V, Rodrigues B., (2010) Ischemia-reperfusion alters cardiac lipoprotein lipase. Biochim Biophys Acta. 1801(2):171-175 [PubMed]
  62. Folmes KD, Chan AY, Koonen DP, Pulinilkunnil TC, Baczkó I, Hunter BE, Thorn S, Allard MF, Roberts R, Gollob MH, Light PE, Dyck JR., (2009) Distinct early signaling events resulting from the expression of the PRKAG2 R302Q mutant of AMPK contribute to increased myocardial glycogen. Circ Cardiovasc Genet 2(5):457-466 [PubMed]
  63. Kienesberger PC, Lee D, Pulinilkunnil T, Brenner DS, Cai L, Magnes C, Koefeler HC, Streith IE, Rechberger GN, Haemmerle G, Flier JS, Zechner R, Kim YB, Kershaw EE., (2009) Adipose triglyceride lipase deficiency causes tissue-specific changes in insulin signaling. J Biol Chem. 284(44):30218-29. [PubMed]
  64. Xue B*, Pulinilkunnil T*, Murano I, Bence KK, He H, Minokoshi Y, Asakura K, Lee A, Haj F, Furukawa N, Catalano KJ, Delibegovic M, Balschi JA, Cinti S, Neel BG, Kahn BB. (*-Co First Authors), (2009) Neuronal protein tyrosine phosphatase 1B deficiency results in inhibition of hypothalamic AMPK and isoform-specific activation of AMPK in peripheral tissues. Mol Cell Biol. 29(16):4563-73. [PubMed]
  65. Puthanveetil P, Wang F, Kewalramani G, Kim MS, Hosseini-Beheshti E, Ng N, Lau W, Pulinilkunnil T, Allard M, Abrahani A, Rodrigues B., (2008) Cardiac glycogen accumulation after dexamethasone is regulated by AMPK. Am J Physiol Heart Circ Physiol.295(4):H1753-62. [PubMed]
  66. Kewalramani G, An D, Kim MS, Ghosh S, Qi D, Abrahani A, Pulinilkunnil T, Sharma V, Wambolt RB, Allard MF, Innis SM, Rodrigues B., (2007) AMPK control of myocardial fatty acid metabolism fluctuates with the intensity of insulin-deficient diabetes. J Mol Cell Cardiol. 42(2):333-342 [PubMed]
  67. Ghosh S, Kewalramani G, Yuen G, Pulinilkunnil T, An D, Innis SM, Allard MF, Wambolt RB, Qi D, Abrahani A, Rodrigues B., (2006) Induction of mitochondrial nitrative damage and cardiac dysfunction by chronic provision of dietary omega-6 polyunsaturated fatty acids. Free Radic Biol Med. 41(9):1413-1424 [PubMed]
  68. Qi D, Kuo KH, Abrahani A, An D, Qi Y, Heung J, Kewalramani G, Pulinilkunnil T, Ghosh S, Innis SM, Rodrigues B., (2006) Acute intralipid infusion reduces cardiac luminal lipoprotein lipase but recruits additional enzyme from cardiomyocytes. Cardiovasc Res. 72(1):124-133 [PubMed]
  69. Pulinilkunnil T, Rodrigues B., (2006) Cardiac lipoprotein lipase: metabolic basis for diabetic heart disease. Cardiovasc Res. 69(2):329-340 [PubMed]
  70. An D, Kewalramani G, Chan JK, Qi D, Ghosh S, Pulinilkunnil T, Abrahani A, Innis SM, Rodrigues B., (2006) Metformin influences cardiomyocyte cell death by pathways that are dependent and independent of caspase-3. Diabetologia. 49(9):2174-2189 [PubMed]
  71. Pulinilkunnil T, An D, Ghosh S, Qi D, Kewalramani G, Yuen G, Virk N, Abrahani A, Rodrigues B., (2005) Lysophosphatidic acid-mediated augmentation of cardiomyocyte lipoprotein lipase involves actin cytoskeleton reorganization. Am J Physiol Heart Circ Physiol.288(6):H2802-10 [PubMed]
  72. Ghosh S, Pulinilkunnil T, Yuen G, Kewalramani G, An D, Qi D, Abrahani A, Rodrigues B., (2005) Cardiomyocyte apoptosis induced by short-term diabetes requires mitochondrial GSH depletion. Am J Physiol Heart Circ Physiol. 289(2):H768-76 [PubMed]
  73. An D, Pulinilkunnil T, Qi D, Ghosh S, Abrahani A, Rodrigues B., (2005) The metabolic "switch" AMPK regulates cardiac heparin-releasable lipoprotein lipase. Am J Physiol Endocrinol Metab. 288(1):E246-53 [PubMed]
  74. Pulinilkunnil T, An D, Yip P, Chan N, Qi D, Ghosh S, Abrahani A, Rodrigues B., (2004) Palmitoyl lysophosphatidylcholine mediated mobilization of LPL to the coronary luminal surface requires PKC activation. J Mol Cell Cardiol. 37(5):931-938 [PubMed]
  75. Ghosh S, Qi D, An D, Pulinilkunnil T, Abrahani A, Kuo KH, Wambolt RB, Allard M, Innis SM, Rodrigues B., (2004) Brief episode of STZ-induced hyperglycemia produces cardiac abnormalities in rats fed a diet rich in n-6 PUFA. Am J Physiol Heart Circ Physiol. 287(6):H2518-27 [PubMed]
  76. Qi D, Pulinilkunnil T, An D, Ghosh S, Abrahani A, Pospisilik JA, Brownsey R, Wambolt R, Allard M, Rodrigues B., (2004) Single-dose dexamethasone induces whole-body insulin resistance and alters both cardiac fatty acid and carbohydrate metabolism. Diabetes 53(7):1790-7. [PubMed]
  77. Ghosh S, An D, Pulinilkunnil T, Qi D, Lau HC, Abrahani A, Innis SM, Rodrigues B., (2004) Role of dietary fatty acids and acute hyperglycemia in modulating cardiac cell death. Nutrition 20(10):916-923 [PubMed]
  78. Pulinilkunnil T, Qi D, Ghosh S, Cheung C, Yip P, Varghese J, Abrahani A, Brownsey R, Rodrigues B, (2003) Circulating triglyceride lipolysis facilitates lipoprotein lipase translocation from cardiomyocyte to myocardial endothelial lining. Cardiovasc Res. 59(3):788-97. [PubMed]
  79. Pulinilkunnil T, Abrahani A, Varghese J, Chan N, Tang I, Ghosh S, Kulpa J, Allard M, Brownsey R, Rodrigues B., (2003) Evidence for rapid "metabolic switching" through lipoprotein lipase occupation of endothelial-binding sites. J Mol Cell Cardiol. 35(9):1093-1103 [PubMed]